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Abs_act

A higher-order neural network (HONN) can be

designed to rapidly learn to classify objects, invariant

to their scale, angular orientation, and translational

position. Other neural networks must be shown a very

large number of distorted versions of a pattern in

order to achieve distortion invariance. A properly

designed HONN must only be trained on one example

of each object to be learned. No further training is

required to achieve invariant recognition, as distortion

invariant feature extraction is built-in as part of the
architecture.

We demonstrate a second-order network which

performs pattern recognition with 100% accuracy for

any translational position and over a scale factor of 5.
The use of a third-order network to achieve

simultaneous rotation, scale and position invariance is

described. Because of their ability to efficiently

perform both mappings required for pattern

recognition applications, namely feature extraction and

object classification, HONNs are superior to multi-

level, f'trst-order networks trained by back-propagation

for distortion invariant pattern recognition.

Introduction

Pattern recognition may be viewed as a two part

process of feature extraction followed by object

classification[I-4]. First, a preliminary mapping from

an image to a representation space is made, generally

resulting in a significant degree of data reduction. A

second mapping then operates on this reduced data to

produce a classification or estimation m an

interpretation space. Historically, these steps have

required either mathematical mappings operating

directly on a detected image [1,2] or initial feature

extraction performed through optical processing

followed by some form of analytical discrimination[3].

Both mappings may also be performed using

neural network models[4]. In this paper we discuss

neural networks both as classifiers in hybrid systems

and as implementations of the complete pattern

recognition operation. Emphasis is given to

recognition invariant to distortions in scale,

translational position and angular orientation. The

relatively poor results with neural models performing

the complete mapping from image to interpretation is

attributable to the unsuitability of the models used for

distortion invariant feature extraction. In contrast,

higher-order neural networks can be designed to

implement the extraction of simple but effective

features suitable for in-plane distortion invariance.

Simulation results of higher-order neural networks

demonstrating simultaneous invariance to scale and

translation will be presented.

N¢gral Network_ for P_tlern Re¢o_ition

Pattern recognition requires the nonlinear

separation of pattern space into subsets representing the

objects to be identified. Early research into neural

networks concentrated on defining their potential for

nonlinear discrimination[5,6]. It was found that a

single layer, first-order neural network can only

perform linear discrimination. However, either

multilayer, first-order networks or single layer



networksof higherordercanprovidethe desired
nonlinearseparation[6].

The capabilityof neuralnetworksto perform
nonlinearseparationcanbe appliedboth to extract
imagefeaturesand to interpretimagesbasedon a
feature set. Practical applicationsin distortion
invariantpatternrecognitionhavebeenfound for
hybrid systems utilizing neural networks for
classification.Troxelet. al.[7]successfullyapplieda
multi-layerperceptronneuralnetworktrained with a

backward error propagation (back-propagation)

learning algorithm [8,9] to classify laser radar images

of targets, invariant to position, rotation and scale.

The data was first mapped into the magnitude of the

Fourier transform with log radial and angle axis, IF(In

r, 0) [, feature space. Glover [10] describes a practical

product-inspection system based on the optical Fourier
transform and neural classification. Rotation and scale

invariance has also been described in a system using

complex-log conformal mapping combined with a

distributed neural associative memory[l 1]. In all of

these approaches utilizing neural classification,

distortion invariance is achieved through non-neural

feature extraction techniques.

It has been argued that nonlinear neural computing
is theoretically superior to methods such as matched

filters or linear correlation for the complete pattern

recognition operation, including feature extraction[12].

However, the performance of neural networks to date

fails to fulfill this promise. For instance, several types
of neural associative memories have been shown to be

computationally more expensive than matched filters in

a study involving the recognition of line segments[13].

Multi-layer networks trained by back-propagation have

also been applied to recognition tasks, examples being

sonar signal classification [14] and distortion invariant

character recognition[15,16]. In these cases, the

networks achieved = 80-90% recognition accuracy only

after being shown a training set of images several

hundred [14] or thousand [15,16] times. Learning by

back-propagation to distinguish a "T" from a "C",

invariant to translation and rotation, required over

5000 presentations of an exhaustive training set[15].

Learning to distinguish 36 patterns in a 5 x 5 pixel

array invariant to translation required over a 1000

training set presentations to a network composed of

two-layers, each with 25 Adelines arranged in
slabs[ 16].

The relatively poor performance of neural

networks in the preceding examples, most particularly

the failure to produce efficient distortion invariant

recognition, is due to the fact that first-order networks

are poorly suited for extracting distortion invariant

features. One layer of a typical first-order network is

shown in Figure 1.
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Figure 1: One layer of a first-order neural network.

The activation level of an output node in a first-

order neural network is determined by an equation of
the form:

Yi = O(Zj wij xj) (1)

where O is a nonlinear threshold function, the xj are

the excitation values of the input nodes, and the

interconnection matrix elements, wij, determine the
weight that each input is given in the summation.

Achieving translation, scale and rotation

invariance requires a neural network to learn

relationships between the input pixels, xj. Note that the

summation within the parenthesis in Eq. (1) is a

function of individual xj's. No advantage is taken of

any known relationships between the xj's. Multi-layer,

first-order networks can learn invariances, but require

a great deal of training, and produce solutions that are

specific to particular training sets.

A further disadvantage is that the mappings

learned are opaque: it is not readily evident what

features are being extracted or how classification is



beingperformed. It is generallyassumedthat the
outputof intermediate-layerhiddennodesin the
networkcorrespondto specificfeatures,andin some
applicationsit ispossibletodiscernwhatthesefeatures
are[14]. In distortion invariant recognition
applications,however,it isnotapparentthatfirst-order
networks'hiddennodescometo representefficient
featuresetsor evenfeaturesetssufficientto allow
classificationbysucceedinglayers.

Higher-Order Ncgr_tl Networks

The output of nodes in a general higher order

network is given by:

Yi= O( _:jwij xj + ZjZk WijkxjXk +

ZjZ kyl Wijkl xjxkx I + ...) (2)

A diagram of a neural network utilizing only second-

order terms is shown in Figure 2. Higher-order neural

networks (HONNs) were evaluated in the 1960s for

performing nonlinear discrimination but were rejected

as impractical due to the combinatoric explosion of

higher-order terms[6].

Recent research [17-19] has shown that the

problem of combinatoric explosion can be overcome

by building invariances into the network architecture

using information about the relationships expected

between the input xj's.

built into the architecture. The invariances achieved

require no learning to produce and apply to any input
pattern learned by the network. Further, a HONN can

perform nonlinear discrimination using only a single

layer so that a simple perceptron learning rule can be

used, leading to rapid convergence[4].

As an example, translation invariance can be built

into the second-order neural network with 4 input

nodes and 1 output node shown in Figure 2. Assume

that the input patterns (1 0 1 0) and (0 1 0 1) are to
be indentified as the same object. If Wil3 = wi24, then

Yi is the same for both inputs. In general, translation

invariance requires that:

Wijk = wi(j-k) (3)

i.e., the connections for equally spaced input pairs are

all set equal.

Combinations of invariances can similarly be
achieved. A second-order neural network will be

simultaneously invariant to scale and translation if the

weights are set according to the function[ 18]

w(ij,k) = w(i,(yk - yj)/(x k - xj)) (4)

Equation (4) implies that Wijk is set equal to wij' k, if

the slope of a line drawn between nodes j and k equals

that formed between j' and k', as shown in Figure 3.

Yi

X1 X2 X3 X4

Figure 2: A second-order neural network

with 4 inputs and I output•

HONNs are thus well suited for invariant pattern

recognition because feature extraction is functionally

Figure 3: Translation and scale invariance achieved by

setting Wijk = wij'k' if the slope of the line formed
by nodes j and k equals that formed by nodes j' and
k'.

Any object drawn in a 2-D plane can have lines of

various slopes drawn within it. An object's relative

content of lines of different slopes does not

change when it is translated in position or scaled in
size, as long as it is not rotated.



Rotationalinvariancecanbeincludedby usinga
third-orderneuralnetwork,wheretheoutputis given
bythefunction

Yi= O(ZjZkZ1Wijkl xj XkXl) (5)

AsshowninFigure4,anythreepointswithinanobject
defineatrianglewith includedangles(a,13,7).When
theobjectis translated,scaledandrotated,thethree
pointsin thesamerelativepositionson theobjectstill
form the included angles (a,13,y). Therefore,
invariancestoall threedistortionscanbeachievedwith
a third-ordernetwork having an interconnection
functionof theform:

Wijkl = Wial37 = wiTa[3 = wi137a (6)

Note that the order of angles matters, but not which
angle is measured first.

Figure 4: Translation, scale and rotation invariance is
achieved by setting all third order weights equal
for sets of inputs j, k, and I which form similar
triangles.

Simulation result_

We have simulated a second-order neural network

to achieve simultaneous invariance to translation and

scale. The single layer, second-order network is

simulated using a 16 x 16, or 256 node, input field

fully interconnected to a single output node which is
thresholded with a fixed-threshold hard limiter:

O(Z)=I, irE>O,

O(Z) = -1, if Z < -0 (7)

There are 256-choose-2 or 32,640 input pairs and
therefore interconnections. The interconnection

weights are constrained to follow Eq. (4) in order to
achieve invariance to scale and translation. The

weights are initially set to zero and a learning rule is
used of the form:

AWijk = (ti - Yi) xj xk (8)

where the expected training output, t, actual output, y,

and inputs x, are all binary. The network is trained on

just 2 distinct patterns - only one size and one location

for each pattern. It learns to distinguish between the

patterns after approximately 10 passes of the training

set, requiring less than 1 minute of nan time on a Sun 3

workstation. After training, it successfully

distinguishes between all translated and scaled versions

of the two objects with 100% accuracy. No further

training is required to achieve this invariance, as it is

built into the architecture. The system can learn to

distinguish between any two distinct patterns, and has

been tested on a variety of problems, including the T-C

problem[5]. Scale invariance of a factor of 5 has been

demonstrated for this problem, with 100% recognition

accuracy.
Due to the limited resolution of the finite 16 x 16

input window, residual scale variance can occur. (T,C)

pairs are distinguished by their relative content of
horizontal and vertical information. For the smallest

(T,C) pair, shown in Figure 5a, the T has 3 input pair

combinations arranged horizontally and 3 vertically,

while the C has 2 arranged horizontally and 4

vertically. In the next larger scale of (T,C), shown in

Figure 5b, the ratio of horizontal to vertical pixel pairs
is 34:34 for the T and 26:42 for the C. It is therefore

easier to distinguish between the smaller (T,C) pair

based on their relative horizontal/vertical content. If

the system is trained on the smaller set of letters,

learning is not pushed to the point where larger

versions can be recognized. In contrast, if large

patterns are used for training, all smaller versions are

subsequently recognized.

Residual scale variance can be eliminated by using

bipolar training values and a modified threshold

function such as,

O(2)=1, ifZ>K,

O(E) = -1, if Z < -K,

O(E) = 0, otherwise,

(9)

where K is some positive constant. Learning with a

sufficiently large value for K forces the network



(a) (b)

Figure5: Twodifferentscalesof T andC drawnin a
16x 16pixelwindow.

to makea greaterdistinctionbetweenthe initial
patterns,allowingeasierdiscriminationbetweentest
patternswhicharesubsequentlyevaluatedwithahard
limiter. Trainingthenetwork on thesmallest(T,C)
pair using a value of K = 1000allowscorrect
identificationof all largertestversions,withoutgreatly
increasingthetraining time.

Conclusion

Our simulations have demonstrated that a second-

order neural network can be rapidly trained to

distinguish between two patterns regardless of their

size and translational position. 100% recognition

accuracy is achieved for several different training

pattern pairs using a 16 x 16 input field size. Training

requires only 10-20 presentations of just one example
of each object to be learned. In addition, a third-order

network architecture to produce simultaneous

invariance to rotation has been described.

Comparisons in terms of recognition accuracy and

learning speed show HONNs to be vastly superior to

multi-layer first-order networks trained by back-

propagation for this application.

This superiority results from the HONN

architecture's ability to perform simple, transparent

feature extraction. These simple features, slopes
between input pixel pairs in the case of the second-

order network, and included angles between input pixel
triplets for the third-order network, are sufficient to

allow the network to rapidly learn to classify patterns.

The provision of a transparent feature extraction

mechanism allows a HONN to efficiently perform the

complete mapping from image to intermediate feature

space to interpretation space required for distortion

invariant pattern recognition.
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